Taming Large MDPs Through Stochastic Games

Chloé Capon¹ Nicolas Lecomte¹ Petr Novotný³ Mickaël Randour^{1,2}

¹UMONS – Université de Mons, Belgium

²F.R.S.-FNRS, Belgium

³Masaryk University, Brno, Czech Republic

September 19, 2024

Highlights of Logic, Games and Automata 2024

- \triangleright A finite set of states S;
- \triangleright An initial state s_{init} ;
- \triangleright A finite set of actions A;
- $\triangleright A \text{ probabilistic transition} \\ \text{function } \delta: S \times A \to \mathsf{Dist}(S).$

- \triangleright A finite set of states S;
- \triangleright An initial state s_{init} ;
- \triangleright A finite set of actions A;
- $\triangleright A \text{ probabilistic transition} \\ \text{function } \delta: S \times A \to \mathsf{Dist}(S).$

Multi-reachability objectives are vectors of sets of states that we want to **reach**.

Multi-reachability objectives are vectors of sets of states that we want to reach.

Multi-reachability objectives are vectors of sets of states that we want to reach.

Multi-reachability objectives are vectors of sets of states that we want to **reach**.

Multi-reachability objectives are vectors of sets of states that we want to **reach**.

The Pareto frontier of Ach(s) is the set of points in the downwardclosure of the convex hull of Ach(s) that are **not dominated**.

The Pareto frontier of Ach(s) is the set of points in the downwardclosure of the convex hull of Ach(s) that are **not dominated**.

We want to compute Pareto frontiers

Chloé Capon

The Pareto frontier of Ach(s) is the set of points in the downwardclosure of the convex hull of Ach(s) that are **not dominated**.

We want to compute Pareto frontiers \rightsquigarrow Develop efficient methods in practice.

Chloé Capon

We extend the work of $[KKNP10]^1$ from one to multiple dimensions.

Goal. Abstract our model by **merging** states together. ~ Approximate the Pareto frontier through a smaller model.

¹Kattenbelt et al., "A game-based abstraction-refinement framework for Markov decision processes". Chloć Capon Taming Large MDPs Through Stochastic Games

We extend the work of [KKNP10]¹ from one to multiple dimensions.

Goal. Abstract our model by **merging** states together. ~ Approximate the Pareto frontier through a smaller model.

Introducing a new form of nondeterminism

¹Kattenbelt et al., "A game-based abstraction-refinement framework for Markov decision processes". Chloć Capon Taming Large MDPs Through Stochastic Games

We extend the work of [KKNP10]¹ from one to multiple dimensions.

Goal. Abstract our model by **merging** states together. ~ Approximate the Pareto frontier through a smaller model.

¹Kattenbelt et al., "A game-based abstraction-refinement framework for Markov decision processes". Chloć Capon Taming Large MDPs Through Stochastic Games

We extend the work of [KKNP10]¹ from one to multiple dimensions.

Goal. Abstract our model by **merging** states together. ~ Approximate the Pareto frontier through a smaller model.

¹Kattenbelt et al., "A game-based abstraction-refinement framework for Markov decision processes".

Chloé Capon

We extend the work of [KKNP10]¹ from one to multiple dimensions.

Goal. Abstract our model by **merging** states together. ~ Approximate the Pareto frontier through a smaller model.

¹Kattenbelt et al., "A game-based abstraction-refinement framework for Markov decision processes".

Chloé Capon

Refining the abstraction

The approximations provide a **quantitative** evaluation of the abstraction's quality and indicate on how to **refine** it.

Example.

Refining the abstraction

The approximations provide a **quantitative** evaluation of the abstraction's quality and indicate on how to **refine** it.

Example.

- \triangleright Consider an abstract state v
- Check the distance between the approximations
- $\triangleright~$ If the distance is too big \leadsto split the state v

But **how** do we split ?

Refining the abstraction

The approximations provide a **quantitative** evaluation of the abstraction's quality and indicate on how to **refine** it.

Example.

- \triangleright Consider an abstract state v
- Check the distance between the approximations
- $\triangleright~$ If the distance is too big \leadsto split the state v

But how do we split ?

We look at the approximations of the concrete states **contained** in v.

Example. For d = (1, 0):

▷ If an abstraction needs to be **refined** then there always exists a direction such that an abstract state is splitted.

Results so far...

- ▷ If an abstraction needs to be refined then there always exists a direction such that an abstract state is splitted.
- \triangleright We have an **iterative** algorithm that returns an ε -approximation of the Pareto frontier of an MDP.

Results so far...

- ▷ If an abstraction needs to be refined then there always exists a direction such that an abstract state is splitted.
- \triangleright We have an **iterative** algorithm that returns an ε -approximation of the Pareto frontier of an MDP.
- What's next ?
 - Implementing the algorithm and;
 - ▷ Assessing its performance in practice.

Results so far...

- ▷ If an abstraction needs to be refined then there always exists a direction such that an abstract state is splitted.
- \triangleright We have an **iterative** algorithm that returns an ε -approximation of the Pareto frontier of an MDP.
- What's next ?
 - Implementing the algorithm and;
 - > Assessing its performance in practice.

Thank you for your attention!

Bibliography

Kattenbelt, Mark et al. "A game-based abstraction-refinement framework for Markov decision processes". In: *Formal Methods Syst. Des.* 36.3 (2010), pp. 246–280. DOI: 10.1007/s10703-010-0097-6. URL: https://doi.org/10.1007/s10703-010-0097-6.