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Chloé Capon

> A finite set of states S;
> An initial state sipit;
> A finite set of actions A;

> A probabilistic transition
function 0 : S x A — Dist(S).
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A threshold vector o € [0,1]™ is achievable if there exists a strategy
o where P7(OT;) > oy forall 1 < i <mn.
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Multi-reachability objectives are vectors of sets of states that we want
to reach.

A threshold vector o € [0, 1]™ is achievable if there exists a strategy
o where P7(OT;) > oy forall 1 < i <mn.
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Multi-reachability objectives are vectors of sets of states that we want
to reach.

A threshold vector o € [0,1]™ is achievable if there exists a strategy
o where P7(OT;) > oy forall 1 < i <mn.
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The Pareto frontier of Ach(s) is the set of points in the downward-
closure of the convex hull of Ach(s) that are not dominated.
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The Pareto frontier of Ach(s) is the set of points in the downward-
closure of the convex hull of Ach(s) that are not dominated.

We want to compute Pareto frontiers
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The Pareto frontier of Ach(s) is the set of points in the downward-
closure of the convex hull of Ach(s) that are not dominated.

We want to compute Pareto frontiers ~~ Develop efficient methods in
practice.
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Game-based abstraction

We extend the work of [KKNP10]! from one to multiple dimensions.

Goal. Abstract our model by merging states together.

~» Approximate the Pareto frontier through a smaller model.

IKattenbelt et al., “A game-based abstraction-refinement framework for Markov

decision processes’.
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> Players are antagonistic > Players are cooperating
(SG) (MDP)

> Lower approximation of > Upper approximation of
the Pareto frontier the Pareto frontier

IKattenbelt et al., “A game-based abstraction-refinement framework for Markov
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Refining the abstraction

The approximations provide a quantitative evaluation of the abstraction's
quality and indicate on how to refine it.

Example.

T2 v
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Refining the abstraction

The approximations provide a quantitative evaluation of the abstraction's
quality and indicate on how to refine it.

Example.
T v > Consider an abstract state v
> Check the distance between the
approximations
3
/14 ‘ > If the distance is too big ~~ split the
| state v
|
|
! But how do we split ?
e
1/4 1 Tl
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Refining the abstraction

The approximations provide a quantitative evaluation of the abstraction's
quality and indicate on how to refine it.

Example.
T v > Consider an abstract state v
> Check the distance between the
approximations
3
/14 ‘ > If the distance is too big ~~ split the
| state v
|
|
! But how do we split ?
e
1/4 1 Tl

We look at the approximations of the concrete states contained in v.

Chloé Capon Taming Large MDPs Through Stochastic Games 4/6



Splitting an abstract state

Example. For d = (1,0):

15 2] T U1 T v2
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Srlrilin(v) = and Sglax(v) =

S4. (v) = argmin max (x,d) and 82, (v) = argmax max (z, d)

scv xEs.L scv x€s.U
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Splitting an abstract state
Example. For d = (1,0):
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Splitting an abstract state
Example. For d = (1,0):
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Sgin() ={w}  and S (v) = {vo,v1}
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Results so far...

> If an abstraction needs to be refined then there always exists a
direction such that an abstract state is splitted.
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> Assessing its performance in practice.

Chloé Capon Taming Large MDPs Through Stochastic Games 6/6



Results so far...

> If an abstraction needs to be refined then there always exists a
direction such that an abstract state is splitted.
> We have an iterative algorithm that returns an e-approximation of
the Pareto frontier of an MDP.
What's next ?
> Implementing the algorithm and,;
> Assessing its performance in practice.

Thank you for your attention!
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