Generation of Counterexamples for Synthesis in Markov Decision Processes

Chloé Capon ¹ Mickael Randour ^{1,2}

¹UMONS – Université de Mons, Belgium

²F.R.S.-FNRS, Belgium

May 30, 2024

MOVEP 2024 - Rennes (France)

- Reactive systems are systems that continuously interact with their environment.
- ► We are interested in the correctness of critical reactive systems, e.g., ABS for cars.

- Reactive systems are systems that continuously interact with their environment.
- ► We are interested in the correctness of critical reactive systems, e.g., ABS for cars.

Verification

Given a **formal model** of the system and a **specification**, the goal is to **check** that the system satisfies the specification.

Synthesis

Given a **system** to control trying to enforce some **specification** within an uncontrollable **environment**, it aims at the **automated construction** of provably-safe system controllers.

- Synthesis algorithms permit to construct a suitable controller if one exists.
- Otherwise, they simply tell us that **no such controller exists**.

 \rightsquigarrow what happens in practice?

- Synthesis algorithms permit to construct a suitable controller if one exists.
- Otherwise, they simply tell us that **no such controller exists**.

 \rightsquigarrow what happens in practice?

Idea
We need refinement mechanisms based on counterexamples that help practitioners understand: 1 why their attempt failed;
2 how they can patch the system – environment – specification triptych to make synthesis possible and obtain an adequate controller.

- $\blacktriangleright~S$ a finite set of states
- \blacktriangleright s_0 an initial state
- $\blacktriangleright \ \delta: S \to \mathcal{D}(S)$ a probabilistic transition function

- $\blacktriangleright~S$ a finite set of states
- \blacktriangleright s_0 an initial state
- $\blacktriangleright \ \delta: S \to \mathcal{D}(S)$ a probabilistic transition function

Example:

 $\mathbb{P}(\diamondsuit\{\underline{s_3}\}) =$

Example:

 $\mathbb{P}(\diamondsuit\{s_3\}) = \frac{3}{4}$

Example:

 $\mathbb{P}(\diamondsuit\{s_3\}) = \frac{3}{4} + \frac{1}{4} \cdot \frac{1}{2}$

We denote by $\mathbb{P}(\Diamond T)$ the probability to reach a set of states T when starting in $s_0.$

We consider properties of the form: $\mathcal{P}_{<\lambda}[\Diamond T]$ for $\lambda \in [0,1]$.

Chloé Capon

Generation of Counterexamples for Synthesis in MDPs

Counterexamples for MCs

A counterexample is a set of paths with a sufficient probability mass.

We have that $\mathcal{T}
ot \in \mathcal{P}_{\leq 3/5}[\diamondsuit\{s_1\}]$

 $\{s_0s_1, s_0s_0s_1\}$ is a counterexample with a probability mass of $^{3}/_{4}$.

Counterexamples for MCs

A counterexample is a set of paths with a sufficient probability mass.

However: Quickly very large \rightsquigarrow hard to understand and manipulate.

A counterexample for $\mathcal{P}_{<1}[\diamondsuit\{s_1\}]$ must be of infinite size.

Counterexamples for MCs

A counterexample is a set of paths with a sufficient probability mass.

However: Quickly very large \rightsquigarrow hard to understand and manipulate.

A counterexample for $\mathcal{P}_{<1}[\diamondsuit\{s_1\}]$ must be of infinite size.

→ compact representation via subsystems¹

¹Ábrahám et al., "Counterexample Generation for Discrete-Time Markov Models: An Introductory Survey".

Chloé Capon

Generation of Counterexamples for Synthesis in MDPs

Critical subsystems for MCs Example

We have that $\mathbb{P}(\diamondsuit\{s_3\}) = \frac{7}{8}$, therefore both specifications are false.

 $\blacktriangleright \mathcal{P}_{\leq 1/5}[\diamondsuit\{s_3\}] \qquad \flat \mathcal{P}_{\leq 3/4}[\diamondsuit\{s_3\}]$

Critical subsystems for MCs Example

We have that $\mathbb{P}(\diamondsuit\{s_3\}) = \frac{7}{8}$, therefore both specifications are false.

 $\blacktriangleright \mathcal{P}_{\leq 1/5}[\Diamond\{s_3\}] \qquad \flat \mathcal{P}_{\leq 3/4}[\Diamond\{s_3\}]$

Critical subsystems for MCs $_{\mbox{\sc Example}}$

We have that $\mathbb{P}(\diamondsuit\{s_3\}) = \frac{7}{8}$, therefore both specifications are false.

 $\blacktriangleright \mathcal{P}_{\leq 1/5}[\diamondsuit\{s_3\}] \qquad \qquad \flat \mathcal{P}_{\leq 3/4}[\diamondsuit\{s_3\}]$

Markov Decision Processes

Models with probabilistic transitions and non-deterministic choices:

- \blacktriangleright Finite set of actions A
- Probabilistic transition function $\delta: S \times A \to \mathcal{D}(S)$

Markov Decision Processes

Models with probabilistic transitions and non-deterministic choices:

Finite set of actions A
 Probabilistic transition function δ : S × A → D(S)
 Strategy
 A function σ : S → A that, given a current state, returns an available action.

Counterexamples for MDPs

► For probabilistic systems with non-determinism, the behavior under the strategies is examined.

Verification:

 $\mathcal{P}_{\leq \lambda}^{\forall}[\Diamond T]$: every strategy has a probability smaller than λ to reach T.

Counterexamples : Need to show that

 $\exists \sigma, \mathbb{P}^{\sigma}(\Diamond T) > \lambda$

Done in $[WJA+14]^2$

²Wimmer et al., "Minimal counterexamples for linear-time probabilistic verification".

Chloé Capon

Counterexamples for MDPs

► For probabilistic systems with non-determinism, the behavior under the strategies is examined.

Verification:

Synthesis:

 $\mathcal{P}_{\leq \lambda}^{\forall}[\Diamond T]$: every strategy has a probability smaller than λ to reach T. $\mathcal{P}_{\leq\lambda}^{\exists}[\Diamond T]$: there exists a strategy with probability smaller than λ to reach T.

Counterexamples : Need to show that

 $\exists \sigma, \mathbb{P}^{\sigma}(\Diamond T) > \lambda$

Done in $[WJA+14]^2$

²Wimmer et al., "Minimal counterexamples for linear-time probabilistic verification".

Chloé Capon

Counterexamples for MDPs

► For probabilistic systems with non-determinism, the behavior under the strategies is examined.

Verification:

Synthesis:

 $\mathcal{P}_{\leq\lambda}^{\forall}[\Diamond T]$: every strategy has a probability smaller than λ to reach T.

Counterexamples : Need to show that

 $\exists \sigma, \mathbb{P}^{\sigma}(\Diamond T) > \lambda$

Done in [WJÁ+14]²

 $\mathcal{P}_{\leq\lambda}^{\exists}[\Diamond T]$: there exists a strategy with probability smaller than λ to reach T.

Counterexamples : Need to show that

 $\forall \sigma, \mathbb{P}^{\sigma}(\Diamond T) > \lambda$

Our ongoing work

²Wimmer et al., "Minimal counterexamples for linear-time probabilistic verification".

Chloé Capon

Generation of Counterexamples for Synthesis in MDPs

Specification $\mathcal{P}_{<1/4}^{\exists}[\diamondsuit\{s_2\}]$ is false :

Specification $\mathcal{P}_{\leq 1/4}^{\exists}[\Diamond\{s_2\}]$ is false : $\blacktriangleright \mathbb{P}^{\sigma_1}(\Diamond\{s_2\}) = 3/4$

Specification $\mathcal{P}_{\leq^{1/4}}^{\exists}[\diamondsuit\{s_2\}]$ is false :

$$\blacktriangleright \mathbb{P}^{\sigma_1}(\diamondsuit\{s_2\}) = \frac{3}{4}$$

$$\blacktriangleright \mathbb{P}^{\sigma_2}(\diamondsuit\{s_2\}) = 1$$

Therefore, we cannot find a strategy that has $\mathbb{P}(\diamondsuit\{s_2\}) \leq 1/4$.

In the case of synthesis, we need to keep the $\ensuremath{\mathsf{structure}}$ of the original MDP:

 Keep every action of each taken state

- Keep every action of each taken state
- The missing probability is sent to a sink state

- Keep every action of each taken state
- ► The missing probability is sent to a sink state
- ► Minimize the number of states

- Keep every action of each taken state
- The missing probability is sent to a sink state
- Minimize the number of states

- Keep every action of each taken state
- ► The missing probability is sent to a sink state
- Minimize the number of states

- Keep every action of each taken state
- ► The missing probability is sent to a sink state
- Minimize the number of states

- Keep every action of each taken state
- The missing probability is sent to a sink state
- ► Minimize the number of states

- Keep every action of each taken state
- The missing probability is sent to a sink state
- ► Minimize the number of states

Conclusion

For now:

- ▶ Works for specifications: $\mathcal{P}_{\sim\lambda}^{\exists}[\Diamond T]$ where $\sim \in \{\leq, <, \geq, >\}$
- ► Generation of counterexamples for synthesis through a Mixed Integer Linear Program (MILP)
- ▶ Used the tool **STORM** to implement our MILP
- Able to minimize on the number of commands when the input is in PRISM

Conclusion

For now:

- ▶ Works for specifications: $\mathcal{P}_{\sim\lambda}^{\exists}[\Diamond T]$ where $\sim \in \{\leq, <, \geq, >\}$
- ► Generation of counterexamples for synthesis through a Mixed Integer Linear Program (MILP)
- ▶ Used the tool **STORM** to implement our MILP

 Able to minimize on the number of commands when the input is in PRISM

Ongoing/Future work:

- ► Assess the perfomance of our method on benchmarks
- Use the information given by counterexamples for when the synthesis process fails

Thank you for your attention!

Bibliography I

Abrahám, Erika et al. "Counterexample Generation for Discrete-Time Markov Models: An Introductory Survey". In: Formal Methods for Executable Software Models - 14th International School on Formal Methods for the Design of Computer, Communication, and Software Systems, SFM 2014, Bertinoro, Italy, June 16-20, 2014, Advanced Lectures, Ed. by Marco Bernardo et al. Vol. 8483, Lecture Notes in Computer Science. Springer, 2014, pp. 65–121. DOI: 10.1007/978-3-319-07317-0\ 3. URL: https://doi.org/10.1007/978-3-319-07317-0_3. Wimmer, Ralf et al. "Minimal counterexamples for linear-time probabilistic verification". In: Theor. Comput. Sci. 549 (2014), pp. 61-100. DOI: 10.1016/j.tcs.2014.06.020. URL: https://doi.org/10.1016/j.tcs.2014.06.020.