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Motivations

> Checking multi-reachability objectives in MDPs is computationally
hard.

> Approach: construct an abstraction of our model which has a smaller
size.
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Motivations

> Checking multi-reachability objectives in MDPs is computationally
hard.

> Approach: construct an abstraction of our model which has a smaller
size.
We give an abstraction-refinement algorithm that:
1 builds an abstraction of an MDP and;

2 refines it until its behavior is similar “enough” to the one of the
MDP with respect to a multi-reachability objective.

> We abstract our model as a two-player stochastic game in order to
compute a lower and an upper approximation of the Pareto frontier.
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Context

Two-player stochastic game:

> A finite set of states V = V], U V5

> An initial state vipit

Vo

> A set of actions A

> A probabilistic transition function
T:VXxA—DWV)

[ A Markov decision process is a stochastic game where V5 = (). ]
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Context

Two-player stochastic game:

> A finite set of states V = V], U V5

> An initial state vipit

o0 > A set of actions A

wIn

> A probabilistic transition function
T:VXxA—DWV)

A Markov decision process is a stochastic game where V5 = ().

> Plays are infinite sequences m = vgagvia; ... where
7(vi, @i, viq1) > 0 for all ¢ € N.

> Histories are finite prefixes h = vpag . . . an_1v, of a play
ending in a state, the last state of h is last(h).

Chloé Capon Taming Large MDPs Through Stochastic Games 3/ 16



Strategies

A strategy for P; is a function o; : Histsi(G) — D(A) that respects
the structure of G.

> Memoryless strategies are of the form o;: V; — D(A).
> Pure strategies are of the form o; : Hists;(G) — A .

Chloé Capon Taming Large MDPs Through Stochastic Games 4 /16



Strategies

A strategy for P; is a function o; : Hists;(G) — D(A) that respects

the structure of G.
> Memoryless strategies are of the form o;: V; — D(A).

> Pure strategies are of the form o; : Hists;(G) — A .

We denote by G192, the Markov chain induced by strategies o1 and os.
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Strategies

A strategy for P; is a function o; : Histsj(G) — D(A) that respects

the structure of G.
> Memoryless strategies are of the form o;: V; — D(A).

> Pure strategies are of the form o; : Histsj(G) — A .

We denote by G71:92, the Markov chain induced by strategies o1 and o5.

Example:
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Reachability objectives

For T'C V a set of states, a reachability objective is defined by

OT = {m € Plays(G) | i e N, «[i] € T'}.

> We denote by PS"7%({T) the probability to reach T from s in the
Markov chain induced by o1 and os.
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Multi-reachability objectives

Multi-reachability objectives are vectors of sets of states (71,...,T},) that
we want to reach.
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Multi-reachability objectives

Multi-reachability objectives are vectors of sets of states (71, ...,T;,) that
we want to reach.

A threshold vector a € [0, 1]" is achievable if there exists a strat-
egy o1 of P; such that for all strategies oo of Py, we have that
PZ7?(OT;) > a; forall 1 < i < m.
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Multi-reachability objectives

Multi-reachability objectives are vectors of sets of states (71, ...,T;,) that
we want to reach.

A threshold vector a € [0, 1]" is achievable if there exists a strat-
egy o1 of P; such that for all strategies oo of Py, we have that
PZ7?(OT;) > a; forall 1 < i < m.
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Multi-reachability objectives

Multi-reachability objectives are vectors of sets of states (71,...,T},) that
we want to reach.

A threshold vector v € [0, 1]" is achievable if there exists a strat-
egy o1 of P1 such that for all strategies oo of Py, we have that
Pgl’gz(QTi) > oy foralll <i<n.

{s6}

The Pareto frontier of Ach(s)
is the set of points in the 34
downward-closure of the con-
vex hull of Ach(s) that are not
dominated.

/4 1 {54,585}
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Game-based abstraction

We extend the work of [KKNP10]! from one to multiple dimensions.

Goal. Abstract our MDP by merging states together.

~» Approximate the Pareto frontier through a smaller model.

IKattenbelt et al., “A game-based abstraction-refinement framework for Markov

decision processes’.
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We extend the work of [KKNP10]! from one to multiple dimensions.

Goal. Abstract our MDP by merging states together.

~» Approximate the Pareto frontier through a smaller model.

Introducing a new form of nondeterminism

N

> Players are antagonistic

(SG)

> Lower approximation of
the Pareto frontier
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Game-based abstraction

We extend the work of [KKNP10]! from one to multiple dimensions.

Goal. Abstract our MDP by merging states together.

~» Approximate the Pareto frontier through a smaller model.

Introducing a new form of nondeterminism

N

> Players are antagonistic > Players are cooperating
(SG) (MDP)

> Lower approximation of > Upper approximation of
the Pareto frontier the Pareto frontier

IKattenbelt et al., “A game-based abstraction-refinement framework for Markov

decision processes’.
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Example of GBA

Let us consider the partition P = {{so, s1, s2,s3}, {s4, 5}, {s6}}
1 Lift the transition function to the partition.
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Example of GBA

Let us consider the partition P = {{so, 1, s2, 53}, {s4, 55}, {s6}}

1 Lift the transition function to the partition.

Chloé Capon Taming Large MDPs Through Stochastic Games 8 /16



Example of GBA

Let us consider the partition P = {{so, 1, s2, 53}, {s4, 55}, {s6}}
1 Lift the transition function to the partition.
2 Group states that have similar behavior with respect to the partition.
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Example of GBA

Let us consider the partition P = {{so, s1, s2, 83}, {54, 5}, {s6}}-
1 Lift the transition function to the partition.
2 Group states that have similar behavior with respect to the partition.
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Resolving the nondeterminism

1
Y ST
81 oS40
> White states are concrete f\ i ||
states from the MDP, ) '

(52\\\ {850
> Grey states are abstract —) A
states, i.e., group of concrete E— —
states. sy | (s D
Ty

In a play, we alternate between:
1 In an abstract state ~» choosing a concrete state;

2 In a concrete state ~ choosing an action of the MDP.
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Resolving the nondeterminism

Depending on whether we want a lower or an upper approximation of the
Pareto frontier, we have:

Optimistic: both types of states Pessimistic: abstract states are
are controlled by only one player controlled by P, and the concrete
(MDP). ones by P; (SG).
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Abstraction-refinement algorithm

1 Build a game-based abstraction G of the MDP following a
partition;
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Abstraction-refinement algorithm

1 Build a game-based abstraction G of the MDP following a
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2 For each state of G: compute its lower and upper frontier;

3 For each abstract state:

> Compute the maximal distance between its lower and upper
frontier;
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1 Build a game-based abstraction G of the MDP following a
partition;

2 For each state of G: compute its lower and upper frontier;

3 For each abstract state:

> Compute the maximal distance between its lower and upper
frontier;

> If this distance is too big: refine the partition by splitting the
abstract state;
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Abstraction-refinement algorithm

1 Build a game-based abstraction G of the MDP following a
partition;

2 For each state of G: compute its lower and upper frontier;

3 For each abstract state:

> Compute the maximal distance between its lower and upper
frontier;

> If this distance is too big: refine the partition by splitting the
abstract state;

4 Repeat until the abstract states no longer need to be refined.
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Computing lower and upper frontiers

> Approximating the upper frontier via [FKP12]2.

> Approximating the lower frontier using the value-iteration approach of

[ACK+20]3.
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2Forejt, Kwiatkowska, and Parker, “Pareto Curves for Probabilistic Model Checking'.
3Ashok et al., "Approximating Values of Generalized-Reachability Stochastic Games”.
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Refining the abstraction

The approximations provide a quantitative evaluation of the abstraction's
quality and indicate on how to refine it.

Example.

T2 v
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Refining the abstraction

The approximations provide a quantitative evaluation of the abstraction's
quality and indicate on how to refine it.

Example.
T v > Consider an abstract state v
> Check the distance between the
approximations
3
/14 ‘ > If the distance is too big ~~ split the
| state v
|
|
! But how do we split ?
e
1/4 1 Tl
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Refining the abstraction

The approximations provide a quantitative evaluation of the abstraction's
quality and indicate on how to refine it.

Example.
T v > Consider an abstract state v
> Check the distance between the
approximations
3
/14 ‘ > If the distance is too big ~~ split the
| state v
|
|
! But how do we split ?
e
1/4 1 Tl

We look at the approximations of the concrete states contained in v.
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Splitting an abstract state

Example. For d = (1,0):

15 2] T U1 T v2
3 3 3
19— 19— 1
—e —e »
I 1 ol 3 1 T ! h
Srlrilin(v) = and Sglax(v) =

S4. (v) = argmin max (x,d) and 82, (v) = argmax max (z, d)

scv xEs.L scv x€s.U
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Splitting an abstract state

Example. For d = (1,0):
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Splitting an abstract state
Example. For d = (1,0):

Ty V0 Ty v1 T V2
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Srlrilin(v) = an max(v) =

Sglin(v) = argmin max(z,d) and S;fm(v) = argmax max (z, d)
sev xEs.L sev xes.U
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Splitting an abstract state
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Splitting an abstract state
Example. For d = (1,0):

Ty V0 Ty v1 T V2

[

1 I

.

AT T T e

Sgin() ={w}  and S (v) = {vo,v1}

Sglin(v) = argmin max(z,d) and ng(v) = argmax max (z, d)
sev xEs.L scv x€es.U
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New abstraction

P = {{30}7 {317 32}7 {33}7 {847 35}’ {86}}
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Results so far...

> If an abstraction needs to be refined then there always exists a
direction such that an abstract state is splitted.
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Results so far...

> If an abstraction needs to be refined then there always exists a
direction such that an abstract state is splitted.
> We have an iterative algorithm that returns an e-approximation of
the Pareto frontier of an MDP.
What's next ?
> Implementing the algorithm and,;
> Assessing its performance in practice.
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Results so far...

> If an abstraction needs to be refined then there always exists a
direction such that an abstract state is splitted.
> We have an iterative algorithm that returns an e-approximation of
the Pareto frontier of an MDP.
What's next ?
> Implementing the algorithm and,;
> Assessing its performance in practice.

Thank you for your attention!
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