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Motivations

▷ Checking multi-reachability objectives in MDPs is computationally
hard.

▷ Approach: construct an abstraction of our model which has a smaller
size.

We give an abstraction-refinement algorithm that:
1 builds an abstraction of an MDP and;
2 refines it until its behavior is similar “enough” to the one of the

MDP with respect to a multi-reachability objective.

▷ We abstract our model as a two-player stochastic game in order to
compute a lower and an upper approximation of the Pareto frontier.
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Two-player stochastic game:

▷ A finite set of states V = V1 ∪ V2

▷ An initial state vinit

▷ A set of actions A

▷ A probabilistic transition function
τ : V ×A → D(V )

A Markov decision process is a stochastic game where V2 = ∅.

▷ Plays are infinite sequences π = v0a0v1a1 . . . where
τ(vi, ai, vi+1) > 0 for all i ∈ N.

▷ Histories are finite prefixes h = v0a0 . . . an−1vn of a play
ending in a state, the last state of h is last(h).

Chloé Capon Taming Large MDPs Through Stochastic Games 3 / 16



Context

v0
a

v1

v2

b

c

d

v3

v4

e

2
3

1
3

1
2

1

1

1

1
2

1

1

Two-player stochastic game:

▷ A finite set of states V = V1 ∪ V2

▷ An initial state vinit

▷ A set of actions A

▷ A probabilistic transition function
τ : V ×A → D(V )

A Markov decision process is a stochastic game where V2 = ∅.

▷ Plays are infinite sequences π = v0a0v1a1 . . . where
τ(vi, ai, vi+1) > 0 for all i ∈ N.

▷ Histories are finite prefixes h = v0a0 . . . an−1vn of a play
ending in a state, the last state of h is last(h).

Chloé Capon Taming Large MDPs Through Stochastic Games 3 / 16



Strategies

A strategy for Pi is a function σi : Histsi(G) → D(A) that respects
the structure of G.

▷ Memoryless strategies are of the form σi : Vi → D(A).
▷ Pure strategies are of the form σi : Histsi(G) → A .

We denote by Gσ1,σ2 , the Markov chain induced by strategies σ1 and σ2.
Example:
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Reachability objectives

For T ⊆ V a set of states, a reachability objective is defined by

♢T = {π ∈ Plays(G) | ∃ i ∈ N, π[i] ∈ T}.

▷ We denote by Pσ1,σ2
s (♢T ) the probability to reach T from s in the

Markov chain induced by σ1 and σ2.
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Multi-reachability objectives

Multi-reachability objectives are vectors of sets of states (T1, . . . , Tn) that
we want to reach.
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The Pareto frontier of Ach(s)
is the set of points in the
downward-closure of the con-
vex hull of Ach(s) that are not
dominated.
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Game-based abstraction

We extend the work of [KKNP10]1 from one to multiple dimensions.

Goal. Abstract our MDP by merging states together.

⇝ Approximate the Pareto frontier through a smaller model.

Introducing a new form of nondeterminism

Optimistic

▷ Players are cooperating
(MDP)

▷ Upper approximation of
the Pareto frontier

Pessimistic

▷ Players are antagonistic
(SG)

▷ Lower approximation of
the Pareto frontier

1Kattenbelt et al., “A game-based abstraction-refinement framework for Markov
decision processes”.
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Example of GBA

Let us consider the partition P = {{s0, s1, s2, s3}, {s4, s5}, {s6}}.
1 Lift the transition function to the partition.

2 Group states that have similar behavior with respect to the partition.
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Resolving the nondeterminism

▷ White states are concrete
states from the MDP,

▷ Grey states are abstract
states, i.e., group of concrete
states.
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In a play, we alternate between:
1 In an abstract state ⇝ choosing a concrete state;
2 In a concrete state ⇝ choosing an action of the MDP.
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Resolving the nondeterminism

Depending on whether we want a lower or an upper approximation of the
Pareto frontier, we have:

Optimistic: both types of states
are controlled by only one player
(MDP).

Pessimistic: abstract states are
controlled by P2 and the concrete
ones by P1 (SG).
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Abstraction-refinement algorithm

1 Build a game-based abstraction G of the MDP following a
partition;

2 For each state of G: compute its lower and upper frontier;
3 For each abstract state:

▷ Compute the maximal distance between its lower and upper
frontier;

▷ If this distance is too big: refine the partition by splitting the
abstract state;

4 Repeat until the abstract states no longer need to be refined.
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Computing lower and upper frontiers

▷ Approximating the upper frontier via [FKP12]2.
▷ Approximating the lower frontier using the value-iteration approach of

[ACK+20]3.
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2Forejt, Kwiatkowska, and Parker, “Pareto Curves for Probabilistic Model Checking”.
3Ashok et al., “Approximating Values of Generalized-Reachability Stochastic Games”.
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Refining the abstraction

The approximations provide a quantitative evaluation of the abstraction’s
quality and indicate on how to refine it.

Example.

T1

T2 v

3/4

11/4

▷ Consider an abstract state v

▷ Check the distance between the
approximations

▷ If the distance is too big ⇝ split the
state v

But how do we split ?

We look at the approximations of the concrete states contained in v.
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Splitting an abstract state

Example. For d = (1, 0):
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Sd
min(v) =

{v0}

and Sd
max(v) =

{v0, v1}

Sd
min(v) = argmin

s∈v
max
x∈s.L

⟨x,d⟩ and Sd
max(v) = argmax

s∈v
max
x∈s.U

⟨x,d⟩

Chloé Capon Taming Large MDPs Through Stochastic Games 14 / 16



Splitting an abstract state

Example. For d = (1, 0):

T1

T2 v0

3
4

1
1
4

T1

T2 v1

3
4

1
2 1

1
4

T1

T2 v2

3
4

1
4

Sd
min(v) =

{v0}

and Sd
max(v) =

{v0, v1}

Sd
min(v) = argmin

s∈v
max
x∈s.L

⟨x,d⟩ and Sd
max(v) = argmax

s∈v
max
x∈s.U

⟨x,d⟩

Chloé Capon Taming Large MDPs Through Stochastic Games 14 / 16



Splitting an abstract state

Example. For d = (1, 0):

T1

T2 v0

3
4

1
1
4

T1

T2 v1

3
4

1
2 1

1
4

T1

T2 v2

3
4

1
4

Sd
min(v) =

{v0}

and Sd
max(v) =

{v0, v1}

Sd
min(v) = argmin

s∈v
max
x∈s.L

⟨x,d⟩ and Sd
max(v) = argmax

s∈v
max
x∈s.U

⟨x,d⟩

Chloé Capon Taming Large MDPs Through Stochastic Games 14 / 16



Splitting an abstract state

Example. For d = (1, 0):

T1

T2 v0

3
4

1
1
4

T1

T2 v1

3
4

1
2 1

1
4

T1

T2 v2

3
4

1
4

Sd
min(v) =

{v0}

and Sd
max(v) =

{v0, v1}

Sd
min(v) = argmin

s∈v
max
x∈s.L

⟨x,d⟩ and Sd
max(v) = argmax

s∈v
max
x∈s.U

⟨x,d⟩

Chloé Capon Taming Large MDPs Through Stochastic Games 14 / 16



Splitting an abstract state

Example. For d = (1, 0):

T1

T2 v0

3
4

1
1
4

T1

T2 v1

3
4

1
2 1

1
4

T1

T2 v2

3
4

1
4

Sd
min(v) = {v0} and Sd

max(v) =

{v0, v1}

Sd
min(v) = argmin

s∈v
max
x∈s.L

⟨x,d⟩ and Sd
max(v) = argmax

s∈v
max
x∈s.U

⟨x,d⟩

Chloé Capon Taming Large MDPs Through Stochastic Games 14 / 16



Splitting an abstract state

Example. For d = (1, 0):

T1

T2 v0

3
4

1
1
4

T1

T2 v1

3
4

1
2 1

1
4

T1

T2 v2

3
4

1
4

Sd
min(v) = {v0} and Sd

max(v) =

{v0, v1}

Sd
min(v) = argmin

s∈v
max
x∈s.L

⟨x,d⟩ and Sd
max(v) = argmax

s∈v
max
x∈s.U

⟨x,d⟩

Chloé Capon Taming Large MDPs Through Stochastic Games 14 / 16



Splitting an abstract state

Example. For d = (1, 0):

T1

T2 v0

3
4

1
1
4

T1

T2 v1

3
4

1
2 1

1
4

T1

T2 v2

3
4

1
4

Sd
min(v) = {v0} and Sd

max(v) = {v0, v1}

Sd
min(v) = argmin

s∈v
max
x∈s.L

⟨x,d⟩ and Sd
max(v) = argmax

s∈v
max
x∈s.U

⟨x,d⟩

Chloé Capon Taming Large MDPs Through Stochastic Games 14 / 16



New abstraction

P1 =
{
{s0}, {s1, s2}, {s3}, {s4, s5}, {s6}

}

s0 s2

s1

s3

s4

s5

s6

1
2

1
2

1
4

3
4
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Results so far...

▷ If an abstraction needs to be refined then there always exists a
direction such that an abstract state is splitted.

▷ We have an iterative algorithm that returns an ε-approximation of
the Pareto frontier of an MDP.

What’s next ?
▷ Implementing the algorithm and;
▷ Assessing its performance in practice.

Thank you for your attention!
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